

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Nombre de la materia: Computación Evolutiva Clave: CI0020-T No. de horas/semana: 3 Total de horas: 48 No. de créditos: **Prerrequisitos:** Inteligencia Artificial (IA7700-T) Objetivo general: Contribución a los atributos de egreso y su nivel de aportación • AE1. Aplicar los conocimientos de ingeniería adquiridos durante sus estudios para elaborar (Avanzado) proyectos de ingeniería que resuelvan problemas específicos. • AE2. Identificar, formular y resolver problemas de ingeniería mediante un pensamiento crítico y (Avanzado) asertivo, basados en los principios de ciencias básicas e ingeniería. • AE3. Presentar y defender su trabajo en diversos foros, tanto académicos como profesionales. (Avanzado) • AE4. Intercambiar su conocimiento y puntos de vista con profesionales del área e integrarse en (Avanzado) equipos de trabajo multidisciplinarios. • AE5. Respetar su entorno social y disciplinar, enmarcado siempre por valores humanos y de ética (Avanzado) profesional, con una actitud creativa y positiva para enfrentar nuevos retos. Programa sintético 1. Introducción 2 hrs. 2. Mathematica y Evolvica _______10 hrs. 3. Algoritmos Genéticos 12 hrs. 4. Programación Genética ______10 hrs. 5. Aplicaciones 6 hrs. 6. Otros paradigmas de Computación Evolutiva ______4 hrs. Total: 44 hrs. Programa desarrollado 1. Introducción 2 hrs. 1.1 Evolución 1.2 Selección y adaptación 1.3 Ejemplos: 2. Mathematica y Evolvica _______10 hrs. 2.1 Notebooks 2.2 Funciones

2.3 Programación Funcional

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

3. Algoritmos Genéticos12 hrs.			
Modelo formal de Evolución			
2 Optimización			
3.3 Esquema general de Algoritmos Evolutivos			
3.4 Cromosomas poliploidales			
3.5 Mutación			
3.6 Recombinación			
3.7 Otros operadores			
3.8 Selección			
3.9 El proceso de GA			
3.10 Preparación para solución de problemas mediante GA			
3.11 Teoría de esquemas			
4. Programación Genética10			
4.1 Programación mediante Evolución			
4.2 Máquinas de Estados Finitos			
4.3 Representación de Genes y Cromosomas			
4.4 Terminales, Funciones			
4.5 Cerradura y Suficiencia de Funciones			
4.6 Población Inicial			
4.7 Función de Aptitud			
4.8 Cruzamiento y Mutación			
4.9 Funciones Secundarias			
5. Aplicaciones 6 hr			
5.1 Regresión Simbólica			
5.2 Hormigas artificiales			
5.3 Sistemas Lindenmayer			
6. Otros paradigmas de Computación Evolutiva 4 hrs			
6.1 Estrategias Evolutivas			
6.2 Evolución Diferencial			
6.3 Colonias de Hormigas			
6.4 Algoritmos Miméticos			
6.5 Enjambres de Partículas			
6.6 Sistemas Inmunes			
Diblio motio hásico.			

Bibliografía básica:

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Metodologías de enseñanza-ap	orendizaje:	
Metodologías de evaluación:		
Notas: No existe en la página W	eb de la FIE, si existe en escolar.	