

2.3 Diagrama de Bode.

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Nombre de la materia: Electrónica Analógica II Clave: CI0101-T No. de horas/semana: 3 Total de horas: 48 No. de créditos: **Prerrequisitos:** Electrónica Analógica I (CI0100-T) Objetivo general: Que el alumno adquiera el conocimiento de los conceptos básicos de los transistores de efectos de campo, así como sus análisis y diseños de estos elementos utilizándolos como amplificadores, también se adquiere el conocimiento de los circuitos integrados lineales y los circuitos osciladores. Contribución a los atributos de egreso y su nivel de aportación • AE1. Aplicar los conocimientos de ingeniería adquiridos durante sus estudios para elaborar (Inicial) proyectos de ingeniería que resuelvan problemas específicos. • AE2. Identificar, formular y resolver problemas de ingeniería mediante un pensamiento crítico y (Inicial) asertivo, basados en los principios de ciencias básicas e ingeniería. Programa sintético 1. Repaso de la BJT en señal pequeña ______4 hrs. 2. Análisis de frecuencia en amplificadores ______5 hrs. 3. Examen del Tema Visto. 1 hrs. 4. Transistores de Efecto de Campo ______12 hrs. 5. Examen del Tema Visto ______1 hrs. 6. Amplificadores operacionales. _______18 hrs. 7. Examen del tema Visto ______1 hrs. 8. Examen del Tema Visto _______1 hrs. 9. Circuitos Osciladores y Temporizadores 9 9 hrs. 10. Examen del Tema Visto. _____1 hrs. Total: 53 hrs. Programa desarrollado 1. Repaso de la BJT en señal pequeña ______4 hrs. 1.1 Aplicaciones a los circuitos de amplificadores. 2. Análisis de frecuencia en amplificadores 5 hrs. 2.1 Circuitos pasa altas y circuitos pasa bajas 2.2 Análisis y diseño de capacitores de acoplo y desacoplo

FACULTAD DE INGENIERÍA ELÉCTRICA

3. Exame	en del Tema Visto1 hrs.
	stores de Efecto de Campo12 hrs.
4.1	Introducción
4.2	Principio de operación del FET
4.3	Región de corte
4.4	Región lineal
4.5	Valores pequeños del voltaje drenaje-fuente
4.6	Valores altos del voltaje drenaje-fuente
4.7	Región de saturación
4.8	Curvas de transferencia
4.9	Configuraciones de los FET
4.10	Source común
4.11	Drain común
4.12	Gate común
4.13	Polarizaciones de los FET.
4.14	Polarización fija.
4.15	Autopolarización.
4.16	Polarización con divisor de voltaje
4.17	Análisis en de los FET en A.C.
4.18	Respuesta a la frecuencia
4.19	Transistores MOSFET
4.20	PRINCIPIO DE OPERACION
4.21	MOSFET de empobrecimiento (D-MOSFET)
4.22	MOSFET de enriquecimiento
4.23	CURVAS CARACTERISTICAS
4.24	Transistor D-MOSFET
4.25	Transistor E-MOSFET
4.26	Modelo de C.A.
4.27	Aplicaciones de los transistores de efecto de campo
5. Exame	en del Tema Visto1 hrs.
	icadores operacionales18 hrs.
6.1	Introducción.
6.2	El Amplificador Diferencial (de diferencias) Básico.
6.3	Fundamentos del Amplificador Operacional Ideal.
6.4	El amplificador operacional ideal
6.5	Circuitos básicos del amplificador operacional
6.6	El amplificador inversor (Al)
6.7	El amplificador no inversor (ANI)
6.8	El seguidor de tensión (seguidor de voltaje)

FACULTAD DE INGENIERÍA ELÉCTRICA

6.9	Propiedades no Ideales de los Amplificadores Operacionales.		
6.10	Efecto de la resistencia de salida.		
6.11	Desviación de Voltaje de C.D. de la salida y su compensación.		
6.12	Velocidad de Cambio (Slew Rate		
6.13	Relación de Rechazo de modo común (RRMC ó CMRR)		
6.14	Respuesta a la frecuencia de un amplificador operacional.		
6.15	Respuesta de la frecuencia en lazo cerrado (retroalimentación)		
6.16	Estabilidad de los circuitos.		
7. Examen del tema Visto1 hrs.			
7.1	Circuitos especiales basados en Amplificadores Operacionales.		
7.2	Integradores y diferenciadores		
7.3	Circuitos sumadores		
7.4	El sumador inversor		
7.5	El amplificador diferencial (de diferencias)		
7.6	Comparadores		
7.7	Comparadores Inversores		
7.8	Comparadores No inversores		
7.9	Comparadores tipo ventana.		
7.10	Comparador inversor con histéresis o comparador regenerativo.		
7.11	Filtros activos de primer orden.		
7.12	Pasabajo		
7.13	Pasaalto		
7.14	Pasabanda		
7.15	Rechazabanda		
7.16	Pasatodo		
8. Exame	en del Tema Visto1 hrs.		
	os Osciladores y Temporizadores 99 hrs.		
9.1	Introducción		
9.2	Ecuación De Temporización Generalizada		
9.3	Circuitos Osciladores Básicos		
9.4	Multivibrador Astable ò Generador De Onda Cuadrada. Aplicación No Lineal.		
9.5	El circuito integrado 555 y aplicación.		
9.6	Modo oscilador (aestable).		
9.7	Modo monoestable.		
9.8	Modo de retardo.		
10. Examen del Tema Visto1 hrs.			

Bibliografía básica:

FACULTAD DE INGENIERÍA ELÉCTRICA

- 1.-Amplificadores Operacionales y C.I., Robert F. Coughlin, Frederick F. Driscoll Prentice Hall
- 2.-Teoría de Circuitos y Dispositivos Electrónicos Boylestad Nashelsky Prentice Hall

Bibliografía complementaria:

- 1.-Principios de ElectrónicaAlbert MalvinoMc Graw Hill
- 2.-Analisis y diseño de Circuitos Electrónicos Donald A. Neamen Mc Graw Hill
- 3.-Operational Amplifiers With Linear Integrated Circuits William D. Stanley Maxwell Macmillan
- 4.-Amplificadores Operacionales y Filtros Activos Antonio Pertence Junior Mc Graw Hill.
- 5.-basic Operational Amplifiers and Linear Integrated Circuits Thomas L. Floyd. Maxwell macmillan
- 6.-Microelectronics Circuits Sedra/Smith Saunder College Publishing
- 7.-Fundamental of Operational Amplifiers & Linear Integrated Circuits Howard M Berlin Maxwell Macmillan International

Metodologías de enseñanza-aprendizaje:

Lectura de material fuera de clase	(X
Ejercicios fuera de clase (tareas)	(X
Investigación documental	(X
Elaboración de reportes técnicos o proyectos	(X
Prácticas de laboratorio en una materia asociada	(X

Metodologías de evaluación:

FACULTAD DE INGENIERÍA ELÉCTRICA

Asistencia	(X)
• Tareas	(X)
Elaboracion de reportes técnicos o proyectos	(X)
Exámenes de academia o departamentales	(X)

Revisores:

Haydeé Edith Lemus Castañeda Víctor G. Barbosa García