

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Nombre de la materia: Lenguajes Formales y Autómatas Clave: CI7001-T No. de horas/semana: 3 Total de horas: 48 No. de créditos: **Prerrequisitos:** Matemáticas Discretas (CI7000-T) Objetivo general: El alumno aprenderá los fundamentos de los lenguajes, gramáticas y autómatas y, por medio de éstos, conocerá las bases para la implementación de compiladores e intérpretes. Contribución a los atributos de egreso y su nivel de aportación • AE1. Aplicar los conocimientos de ingeniería adquiridos durante sus estudios para elaborar (Medio) proyectos de ingeniería que resuelvan problemas específicos. • AE2. Identificar, formular y resolver problemas de ingeniería mediante un pensamiento crítico v (Medio) asertivo, basados en los principios de ciencias básicas e ingeniería. • AE3. Presentar y defender su trabajo en diversos foros, tanto académicos como profesionales. (Medio) • AE4. Intercambiar su conocimiento y puntos de vista con profesionales del área e integrarse en (Medio) equipos de trabajo multidisciplinarios. Programa sintético 1. Conceptos básicos 2 hrs. 2. Lenguajes regulares 14 hrs. 3. Proyecto de programación 1: Implementación de AFD. ______1 hrs. 4. Examen Parcial 1 2 hrs. 5. Propiedades de los Lenguajes Regulares 6 hrs. 6. Lenguajes Libres de Contexto ______12 hrs. 7. Proyecto 2. Simulación de un AP _______1 hrs. 8. Examen Parcial 2 ______2 hrs. 9. Máquinas de Turing 8 hrs. 10. Proyecto de programación 3: Implementación de MT. ______1 hrs. 11. Examen Parcial 3 2 hrs. Total: 51 hrs. Programa desarrollado 1. Conceptos básicos ______2 hrs. 1.1 Conjuntos, Relaciones y Funciones

1.2 Alfabetos, Cadenas y Lenguajes

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

1.3 Especificación Finita de Lenguajes	
2. Lenguajes regulares	14 hrs.
2.1 Introducción	
2.2 Expresiones Regulares (ER's)	
2.3 Autómatas Finitos Deterministas (AFD's)	
2.4 Minimización de AFD's	
2.5 Autómatas Finitos No Deterministas (AFND's)	
Proyecto de programación 1: Implementación de AFD.	
4. Examen Parcial 1	2 hrs.
Propiedades de los Lenguajes Regulares	6 hrs.
5.1 Equivalencia	
5.1.1 Conversión de ER a AFND	
5.1.2 Conversión de AFND a AFD	
5.1.3 Conversión de AFD a ER	
5.2 Lema del bombeo	
6. Lenguajes Libres de Contexto	12 hrs.
6.1 Introducción	
6.2 Gramáticas Libres de Contexto (GLC's)	
6.3 Autómatas del Pila (AP's)	
6.4 Equivalencia	
6.4.1 Conversión de GLC a AP	
6.4.2 Conversión de AP a GLC	
6.5 Formas normales de gramáticas	
7. Proyecto 2. Simulación de un AP	1 hrs.
8. Examen Parcial 2	
9. Máquinas de Turing	
9.1 Introducción	
9.2 Máquinas de Turing (MT's)	
9.3 Técnicas de programación de MT's	
9.4 Notación Modular	
10. Proyecto de programación 3: Implementación de MT.	1 hrs.
11. Examen Parcial 3	

Bibliografía básica:

- John E. Hopcroft. Introduction to automata theory, languages and computation. 2nd edition, Addison-Wesley, 2001.
- P. Linz An Introduction to Formal Languages and Automata, Jones and Barlett Publishers, 1997.
- D. Kelly Teoría de autómatas y lenguajes formales, Prentice-Hall, 1995.
- Kenneth H. Rosen. Matematicas discretas y sus aplicaciones. Quinta edición. Mc Graw Hill.

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Metodologías de enseñanza-aprendizaje:

 Revisión de conceptos, análisis y solución de problemas en clase 	(X)
Lectura de material fuera de clase	(X)
Ejercicios fuera de clase (tareas)	(X)
Elaboración de reportes técnicos o proyectos	(X)

Metodologías de evaluación:

Tareas	(X)
Elaboracion de reportes técnicos o proyectos	(X)
Exámenes de academia o departamentales	(X)

Revisores:

Programa propuesto por M.C. Luis Eduardo Gambo Guzmán y modificado por M.C. Luis Fernando Guzmán Nateras el día 19 de mayo de 2017.

Notas: Los proyectos quedaron con una hora, por requerimientos del sistema que no permite poner cero horas. Esto incrementa el número de horas de 48 a 51.