

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Nombre de la materia: Máquinas Eléctricas I Clave: IA0000-T No. de horas/semana: 3 Total de horas: 48 No. de créditos: Teoría Electromagnética II (CI0500-T), Cálculo III (CB0002-T), Circuitos Prerrequisitos: Eléctricos I (CI0200-T) Objetivo general: Que el alumno conozca las leyes fundamentales que rigen la operación de una máquina eléctrica. Contribución a los atributos de egreso y su nivel de aportación • AE1. Aplicar los conocimientos de ingeniería adquiridos durante sus estudios para elaborar (Inicial) proyectos de ingeniería que resuelvan problemas específicos. • AE2. Identificar, formular y resolver problemas de ingeniería mediante un pensamiento crítico y (Inicial) asertivo, basados en los principios de ciencias básicas e ingeniería. Programa sintético 1. Circuitos Magnéticos 6 hrs. 2. Primer examen parcial ______2 hrs. 3. Transformadores ______10 hrs. 4. Segundo examen parcial ______2 hrs. 5. Conversión de la Energía 8 hrs. 6. Tercer examen parcial 2 hrs. 7. Introducción a las máquinas rotatorias 18 hrs. Total: 48 hrs. Programa desarrollado 1. Circuitos Magnéticos 6 hrs. Introducción y conceptos básicos 1.2 Permeabilidad y saturación 1.3 Leyes generales de los circuitos magnéticos 1.4 Operación y pérdidas en c.a. 1.5 Factor de apilamiento 1.6 Efecto de borde 1.7 Energía almacenada en un campo magnético 1.8 Cálculo de la inductancia

2. Primer examen parcial ______2 hrs.

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

3. Trans	formadores	10 hrs.		
3.1	Operación del transformador y la ley de Faraday			
3.2	Ecuaciones de la FEM de un transformador			
3.3	Pérdidas de un transformador			
3.4	Circuitos equivalentes de transformadores no ideales			
3.5	Pruebas de los transformadores			
3.6	Conexiones de los transformadores			
3.7	Autotransformadores			
4. Segui	ndo examen parcial	2 hrs.		
5. Conversión de la Energía 8 hrs.				
5.1	Conversión de la energía			
5.2	Ecuaciones de fuerza y par			
5.3	Dinámica electromecánicas			
6. Tercer examen parcial2 hrs.				
7. Introducción a las máquinas rotatorias18 hrs.				
7.1	Principios de operación			
7.2	Acción del conmutador			
7.3	Devanados de armadura y partes físicas			
7.4	Ecuaciones de la FEM			
7.5	Ecuaciones del par			
7.6	Ecuaciones de velocidad			
7.7	Clasificación de máquinas			
7.8	Campo de entrehierro y reacción de armadura			
7.9	Caída de voltaje en reactancia y conmutación			
7.10	Efecto de saturación sobre el voltaje de un generador en derivación			
7.11	Pérdidas y eficiencia			
7.12	Cálculos a partir de circuitos equivalentes			
Dibliano	-1% - 1. 4 - 1			

Bibliografía básica:

Máquinas Eléctricas; Fitzgerald, A. E., Kingsley, C. Jr., Umans, S. D.; 6ta. Edición; McGraw-Hill.

Bibliografía complementaria:

Máquinas Eléctricas y Electromecánicas; Nasar, S.A.; McGraw-Hill.

Máquinas Eléctricas; Cathey, J. J.; McGraw Hill

Máquinas Eléctricas; Sanz Feito, J.; Prentice Hall.

Máquinas Eléctricas y Transformadores; Guru, B. S., Hiziro?lu, H. R.; Oxford University Press (Alfaomega)

Máquinas Eléctricas; Sanjurjo N., R.; McGraw-Hill.

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Metodologías de enseñanza-aprendizaje:

 Revisión de conceptos, análisis y solución de problemas en clase 	(X)
Lectura de material fuera de clase	(X)
Ejercicios fuera de clase (tareas)	(X)
Prácticas de laboratorio en una materia asociada	(X)

Metodologías de evaluación:

Asistencia	(X)
• Tareas	(X)

Revisores:

M.C. José Alberto Avalos González Dr. Carlos Pérez Rojas Ing. Gustavo Saucedo Zavala Dr. Juan Carlos Silva Chávez