

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Nombre de la materia: Laboratorio de Instrumentación Virtual I

Clave: IA3002-L

No. de horas/semana: 2
Total de horas: 32
No. de créditos: 4

Prerrequisitos: Instrumentación II (IA3001-T)

Objetivo general: Que el estudiante adquiera los conceptos fundamentales para desarrollar habilidades de programación en el lenguaje gráfico LabVIEW que le ayuden en la construcción de instrumentos virtuales. Creando interfaces de usuario o paneles frontales con controles e indicadores y o diagramas de bloques. Asimismo, que el alumno pueda manejar herramientas y funciones básicas para involucrar estructuras de control, diferentes tipos de datos y arreglos multidimensionales.

Contribución a los atributos de egreso y su nivel de aportación

Barras de Herramienta y Menú.

Programa sintético

2.1.2

1. Instrumentación Virtual2 hrs.				
2. El ambiente de LabVIEW.	10 hrs.			
3. Construyendo Instrumentos Virtuales (VI`s)10 hrs.				
4. Programación Estructurada10 hrs.				
	Total: 32 hrs.			
Programa desarrollado				
Instrumentación Virtual.	2 hrs.			
1.1 Conceptos Generales sobre Instrumentos.				
1.2 Operadores e Instrumentos Virtuales.				
1.2.1 Que es un instrumento Virtual.				
1.2.2 Ventajas e inconvenientes de un Instrumento Virtual.				
1.3 Áreas de Aplicación de la Instrumentación Virtual (educativas, Investiga	.3 Áreas de Aplicación de la Instrumentación Virtual (educativas, Investigación e Industriales).			
1.4 Arquitectura Básicas de un sistema de Adquisición de Datos (SAD).	4 Arquitectura Básicas de un sistema de Adquisición de Datos (SAD).			
1.4.1 Naturaleza y Tratamiento de las Señales de Entrada y Salida o	de un SAD.			
1.4.2 Arquitecturas Básicas de un SAD.				
1.5 Lenguajes y Entornos Orientados a la Instrumentación Virtual.				
El ambiente de LabVIEW.	10 hrs.			
2.1 Uso de LabVIEW				
2.1.1 Ventanas Panel y Diagrama.				

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

	2.1.3	Paleta de Herramientas, Control y Funciones.			
2.2	Apertura y Ejecución de un Instrumento Virtual.				
2.3	Uso de	la Ayuda en LabView.			
3. Const	ruyendo	Instrumentos Virtuales (VI`s)10 hrs.			
3.1	Tipos d	e Variables y Datos.			
3.2	Ejempl	o de Programación de un instrumento Virtual sencillo.			
	3.2.1	Creando un VI.			
	3.2.2	Creando el diagrama de Bloques.			
	3.2.3	Interconexión de los Bloques.			
	3.2.4	Ejecutar y Grabar un VI.			
3.3	Creand	o, editando y Depurando VI`s			
	3.3.1	Cambiando Colores e indicadores.			
	3.3.2	Ejecución Pasos a Paso. Flujo de Datos.			
	3.3.3	VI Rotos.			
	3.3.4	Uso del Probe.			
	3.3.5	Puntos de Ruptura.			
3.4	Sub-VI				
	3.4.1	Creando un Sub-VI.			
	3.4.2	Creando Sub-VI desde Secciones de un VI.			
3.5	Ejempl	os de aplicación.			
4. Progra	4. Programación Estructurada10 hrs.				
4.1		uras Iterativas: While Loop y For Loop.			
4.2	Registr	o de desplazamiento.			
4.3	Estruct	uras Case y Secuencias.			
4.4	Nodos.				
	4.4.1	Nodo Fórmula.			
	4.4.2	Nodo Matlab Strip.			
4.5	Variable	es Locales y Globales.			
4.6	Visualiz	zación de Datos en Forma Gráfica			
4.7	Ejemple	os de Aplicación			
4.8	Segund	do Examen Parcial			

Bibliografía básica:

- [1] Lisa K. Wells, Jeffrey Travis, "Lab VIEW for Everyone Graphical Programming Made Even Easier"
- [2] Jon B. Olasen, Eric Rosow, "Virtual Bio-Instrumentation" Prentice Hall, 2002.
- [3] Nesimi Ertugrul, "LabVIEW, For electric circuits, machines, driver and laboratories", Prentice Hall, 2002.
- [4] Robert H. Bishop, "LabVIEW Student Edition", Prentice Hall, 2001.

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Metodologías de enseñanza-aprendizaje:

 Revisión de conceptos, análisis y solución de problemas en clase 	(X)
Lectura de material fuera de clase	(X)
Ejercicios fuera de clase (tareas)	(X)
Investigación documental	(X)
Elaboración de reportes técnicos o proyectos	(X)
Prácticas de laboratorio en una materia asociada	(X)
 Uso de una herramienta computacional de cálculo simbólico 	(X)

Metodologías de evaluación:

Asistencia	(X)
• Tareas	(X)
Elaboracion de reportes técnicos o proyectos	(X)
Exámenes de academia o departamentales	(X)
Uso de herramienta computacional para cálculo simbólico	(X)

Revisores:

Dr. Juan Anzurez Marín