

FACULTAD DE INGENIERÍA ELÉCTRICA

Nombre de la materia:Organización de ComputadorasClave:IA7400-TNo. de horas/semana:3Total de horas:48

No. de créditos: 6

Prerrequisitos: Electrónica Digital I (Cl0300-T)

Objetivo general: Que el alumno comprenda el funcionamiento y la forma de interacción de los diferentes componentes de un computador. Que conozca y describa las consideraciones requeridas para el diseño de dichos componentes. Que tenga conocimiento de las tendencias actuales y futuras en la organización y arquitectura de computadoras.

Contribución a los atributos de egreso y su nivel de aportación

AE1. Aplicar los conocimientos de ingeniería adquiridos durante sus estudios para elaborar proyectos de ingeniería que resuelvan problemas específicos.
 AE2. Identificar, formular y resolver problemas de ingeniería mediante un pensamiento crítico y asertivo, basados en los principios de ciencias básicas e ingeniería.
 AE3. Presentar y defender su trabajo en diversos foros, tanto académicos como profesionales.
 AE4. Intercambiar su conocimiento y puntos de vista con profesionales del área e integrarse en equipos de trabajo multidisciplinarios.
 AE5. Respetar su entorno social y disciplinar, enmarcado siempre por valores humanos y de ética profesional, con una actitud creativa y positiva para enfrentar nuevos retos.

Programa sintético

1. Introducción	1 hrs.
	2 hrs.
	5 hrs.
	3 hrs.
	4 hrs.
	2 hrs.
	6 hrs.
	4 hrs.
	3 hrs.
	2 hrs.
	3 hrs.
	3 hrs.
	4 hrs.
	4 hrs.
	2 hrs.

FACULTAD DE INGENIERÍA ELÉCTRICA

Total: 48 hrs.

Programa desarrollado 1. Introducción 1 hrs. Organización y arquitectura 2. Evolución y desempeño de las computadoras ______2 hrs. 2.1 Breve historia de los computadores 2.2 Diseño pensando en desempeño. Evolución de la arquitectura Intel x86. Sistemas embebidos y los procesadores ARM. 2.3 Tarea Programación 1.- Converidor decimal-binario-hexadecimal. 3. Un enfoque global de la función e inteconexión del computador ______5 hrs. Componentes del computador 3.2 Funcionamiento del computador 3.3 Tarea Programación 2.- Simulador del ciclo de la instrucción 3.4 Estructuras de interconexión 3.5 Interconexión con buses 3.6 Interconexión punto a punto 3.7 PCI Express 4. Memoria interna 3 hrs. Revisión del sistema de memoria del computador 4.2 Memoria principal semiconductora 4.3 Corrección de errores 4.4 Tarea Programación 3.- Código Hamming Organización avanzada de memorias DRAM 4.5 5. Memoria Cache 4 hrs. 5.1 Principios de memoria caché 5.2 Elementos de diseño del caché Tarea Programación 4.- Simulación de memoria caché 5.4 Organización del caché del Pentium 4 5.5 Organización del caché ARM 6. Exámen parcial 1 ______2 hrs. 7. Memoria externa 6 hrs. 7.1 Discos magnéticos 7.2 RAID 7.3 Discos de estado sólido 7.4 Memoria óptica 7.5 Cinta magnética 8. Entrada y salida ______4 hrs. 8.1 Dispositivos externos

FACULTAD DE INGENIERÍA ELÉCTRICA

8.2	Módulos de E/S
8.3	E/S programada
8.4	E/S mediante interrupciones
8.5	Acceso directo a memoria
8.6	Canales y procesadores de E/S
8.7	La interfaz externa: Thunderbold e Infiniband
9. Aritm	ética del computador3 hrs.
9.1	La unidad aritmética y lógica
9.2	Representación en coma flotante
9.3	Aritmética en coma flotante
9.4	Tarea Programación 5 Operaciones aritméticas binarias
9.5	Representación de punto flotante
10. Eva	uación2 hrs.
	ertorio de instrucciones: características y funciones3 hrs.
11.1	Características de las instrucciones máquina
11.2	Tipos de operandos
11.3	Tipos de datos en el Intel x86 y ARM
11.4	Tipos de operaciones
11.5	Tipos de operaciones en el Intel x86 y ARM
12. Rep	ertorio de instrucciones: modos de direccionamiento y formatos3 hrs.
12.1	Direccionamiento
12.2	Modos de direccionamiento en el Pentium II y el PowerPC
12.3	Formatos de instrucciones
12.4	Formatos de instrucciones en el Pentium II y el PowerPC
13. Estr	uctura y función de la CPU4 hrs.
	Organización del procesador
13.2	Organización de los registros
13.3	El ciclo de instrucción
13.4	Segmentación de instrucciones
14. Micr	oarquitectura4 hrs.
14.1	La trayectoria de datos
14.2	Microinstrucciones
14.3	Control de microinstrucciones
14.4	Secuencia y ejecución de microinstrucciones
15. Eva	uación2 hrs.

Bibliografía básica:

- William Stallings, Organización y Arquitectura de Computadores, 9a edición, Prentice Hall, 2012

FACULTAD DE INGENIERÍA ELÉCTRICA

Bibliografía complementaria:

- Tanenbaum, A. S., Organización de Computadoras: un enfoque estructurado, 6a edición, Prentice- Hall, 2012.

Metodologías de enseñanza-aprendizaje:

 Revisión de conceptos, análisis y solución de problemas en clase 	(X)
Lectura de material fuera de clase	(X)
Ejercicios fuera de clase (tareas)	(X)
Investigación documental	(X)
Elaboración de reportes técnicos o proyectos	(X)

Metodologías de evaluación:

• Tareas	(X)
Elaboracion de reportes técnicos o proyectos	(X)
Exámenes de academia o departamentales	(X)

Revisores:

Programa propuesto por: M.C. Luis Fernando Guzmán Nateras y M.C. Luis Eduardo Gamboa Guzmán en 2015 y modificado por M.C. Luis Fernando Guzmán Nateras el 12 de Junio de 2017.