

1.4 Partes principales1.5 Aplicaciones1.6 Enfoque del curso

1.7 Prácticas para construcción de robots

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Nombre de la materia: Robótica Móvil I Clave: IA7740-T No. de horas/semana: 3 Total de horas: 48 No. de créditos: **Prerrequisitos:** Cálculo IV (CB0003-T), Programación de Computadoras (CI0000-T) Objetivo general: Al finalizar el curso, el alumno será capaz de: - Identificar los principales aspectos de la robótica móvil desde una perspectiva computacional. - Conocer los componentes básicos utilizados en la construcción de robots móviles sencillos, tales como sensores, actuadores, microcontroladores, etc. - Aplicar algoritmos para resolver problemas del área de robótica móvil (ambiente real y simulado). - Analizar artículos científicos del área de robótica móvil. Contribución a los atributos de egreso y su nivel de aportación • AE1. Aplicar los conocimientos de ingeniería adquiridos durante sus estudios para elaborar (Avanzado) proyectos de ingeniería que resuelvan problemas específicos. • AE2. Identificar, formular y resolver problemas de ingeniería mediante un pensamiento crítico y (Avanzado) asertivo, basados en los principios de ciencias básicas e ingeniería. Programa sintético 1. Introducción 4 hrs. 2. Percepción 16 hrs. 3. Arquitecturas de Robots 6 hrs. 4. Examen 1 ______2 hrs. 5. Modelado del Espacio ______6 hrs. 6. SLAM ______8 hrs. 7. Proyecto final ______4 hrs. 8. Examen 2 2 hrs. Total: 48 hrs. Programa desarrollado 1. Introducción 4 hrs. ¿Qué es un robot? 1.2 Breve historia 1.3 Tipos de robots

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

2 Parcan	anción	16 hrs.
2.1	epción	10 1113.
	Fusión sensorial	
	Prácticas para construcción de robots	
3. Arquite	tecturas de Robots	6 hrs.
3.1	Enfoque deliberativo	
3.2	Enfoque reactivo	
3.3	Arquitectura híbridas	
3.4	Enfoque probabilistico	
	3.4.1 Repaso de probabilidad	
	3.4.2 Modelos gráficos	
	3.4.3 Filtro bayesiano, filtro de Kalman, filtro de partículas	
3.5	Prácticas para construcción de robots	
4. Exame	nen 1	2 hrs.
	elado del Espacio	
5.1	Representación del espacio	
5.2	Representación del robot	
5.3	Prácticas para construcción de robots	
6. SLAM	Λ	8 hrs.
6.1	Construcción de mapas	
6.2	Localización local y global	
6.3	Prácticas para construcción de robots	
7. Proyec	ecto final	4 hrs.
	nen 2	

Bibliografía básica:

- Gregory Dudek and Michael Jenkin. Computational Principles of Mobile Robotics. 2nd ed. Cambridge University Press. 2010.
- Roland Siegwart, Illah R. Nourbakhsh, Davide Scaramuzza. Introduction to Autonomous Mobile Robots. 2nd ed. The MIT Press, 2011.
- Carol Fairchild, Dr. Thomas L. Harman. ROS Robotics By Example. 2nd ed. Packt Publishing, 2018.

Bibliografía complementaria:

- Wyatt S. Newman. A Systematic Approach to Learning Robot Programming with ROS. CRC Press, 2018.
- Alonzo Kelly. Mobile Robotics Mathematics, Models And Methods. Cambridge University Press, 2013.
- Lentin Joseph, Jonathan Cacace. Mastering ROS for Robotics Programming. 2nd ed. Packt Publishing, 2018.

Metodologías de enseñanza-aprendizaje:

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

 Revisión de conceptos, análisis y solución de problemas en clase 	(X)
Lectura de material fuera de clase	(X)
Ejercicios fuera de clase (tareas)	(X)
Investigación documental	(X)
Elaboración de reportes técnicos o proyectos	(X)
Prácticas de laboratorio en una materia asociada	(X)

Metodologías de evaluación:

Asistencia	(X)
• Tareas	(X)
Elaboracion de reportes técnicos o proyectos	(X)
Exámenes de academia o departamentales	(X)

Revisores:

Programa propuesto por Rosalía Mora Juárez y Leonardo Romero Muñoz. 12/agosto/2022.